Posted tagged ‘airplane’

Development of Aerial Combat in World War II

May 30, 2010

Fighter development slowed between World War I and II, with the most significant change coming late in the period, when the classic World War I type machines started to give way to metal monocoque or semi-monocoque monoplanes, with cantilever wing structures. Given limited defense budgets, air forces tended to be conservative in their aircraft purchases, and biplanes remained popular with pilots because of their agility. Designs such as the Gloster Gladiator, Fiat CR.42, and Polikarpov I-15 were common even in the late 1930s, and many were still in service as late as 1942. Up until the mid-1930s, the vast majority of fighter aircraft remained fabric-covered biplanes. Fighter armament eventually began to be mounted inside the wings, outside the arc of the propeller, though most designs retained two synchronized machine-guns above the engine (which were considered more accurate). Rifle-caliber guns were the norm, with .50 caliber machine guns and 20 mm cannons deemed “overkill.” Considering that many aircraft were constructed similarly to World War I designs (albeit with aluminum frames), it was not considered unreasonable to use World War I-style armament to counter them. There was insufficient aerial combat during most of the period to disprove this notion.

The rotary engine, popular during World War I, quickly disappeared, replaced chiefly by the stationary radial engine. Aircraft engines increased in power several-fold over the period, going from a typical 180 hp in the 1918 Fokker D.VII to 900 hp in the 1938 Curtiss P-36. The debate between the sleek in-line engines versus the more reliable radial models continued, with naval air forces preferring the radial engines, and land-based forces often choosing in-line units. Radial designs did not require a separate (and vulnerable) cooling system, but had increased drag. In-line engines often had a better power-to-weight ratio, but there were radial engines that kept working even after having suffered significant battle damage.

Some air forces experimented with “heavy fighters” (called “destroyers” by the Germans). These were larger, usually a two- engine aircraft, sometimes adaptations of light or medium bomber types. Such designs typically had greater internal fuel capacity (thus longer range) and heavier armament than their single-engine counterparts. In combat, they proved ungainly and vulnerable to more nimble single-engine fighters.

The primary drive for fighter innovation, right up to the period of rapid rearmament in the late thirties, was not military budgets, but civilian aircraft races. Aircraft designed for these races pioneered innovations like streamlining and more powerful engines that would find their way into the fighters of World War II.

At the very end of the inter-war period came the Spanish Civil War. This was just the opportunity the German Luftwaffe, Italian Regia Aeronautica, and the Soviet Union’s Red Air Force needed to test their latest aircraft designs. Each party sent several aircraft to back their side in the conflict. In the dogfights over Spain, the latest Messerschmitt fighters (Bf 109) did well, as did the Soviet Polikarpov I-16. The German design, however, had considerable room for development and the lessons learned in Spain led to greatly improved models in World War II. The Russians, whose side lost in the conflict, nonetheless determined that their planes were sufficient for their immediate needs. I-16s were later slaughtered en masse by these improved German models in World War II, although they remained the most common Soviet front-line fighter until well into 1942. For their part, the Italians were satisfied with the performance of their Fiat CR.42 biplanes, and being short on funds, continued with this design even though it was obsolescent. The Spanish Civil War also provided an opportunity for updating fighter tactics. One of the innovations to result from the aerial warfare experience this conflict provided was the development of the “finger-four” formation by the German pilot Werner Mölders. Each fighter squadron (German: Staffel) was divided into several flights (Schwärme) of four aircraft. Each Schwarm was divided into two Rotten ,which was a pair of aircraft. Each Rotte was composed of a leader and a wingman. This flexible formation allowed the pilots to maintain greater situational awareness, and the two Rotte could split up at any time and attack on their own. The finger-four would become widely adopted as the fundamental tactical formation over the course of World War II.

Aerial combat formed an important part of World War II military doctrine. The ability of aircraft to locate, harass, and interdict ground forces was an instrumental part of the German combined-arms doctrine, and their inability to achieve air superiority over Britain made a German invasion unfeasible. German Field Marshal Erwin Rommel noted the effect of airpower: “Anyone who has to fight, even with the most modern weapons, against an enemy in complete command of the air, fights like a savage against modern European troops, under the same handicaps and with the same chances of success.”

During the 1930s, two different streams of thought about air-to-air combat began to emerge, resulting in two different approaches to monoplane fighter development. In Japan and Italy especially, there continued to be a strong belief that lightly armed, highly maneuverable single-seat fighters would still play a primary role in air-to-air combat. Aircraft such as the Nakajima Ki-27, Nakajima Ki-43 and the Mitsubishi A6M Zero in Japan, and the Fiat G.50 and Macchi C.200 in Italy epitomized a generation of monoplanes designed to this concept.

The other stream of thought, which emerged primarily in Britain, Germany, the Soviet Union, and the United States was the belief that the high speeds of modern combat aircraft and the g-forces imposed by aerial combat meant that dogfighting in the classic World War I sense would be impossible. Fighters such as the Messerschmitt Bf 109, the Supermarine Spitfire, the Yakovlev Yak-1 and the Curtiss P-40 Warhawk were all designed for high level speeds and a good rate of climb. Good maneuverability was desirable, but it was not the primary objective.

The 1939 Soviet-Japanese Battle of Khalkhyn Gol and the initial German invasion of Poland that same year were too brief to provide much feedback to the participants for further evolution of their respective fighter doctrines. During the Winter War, the greatly outnumbered Finnish Air Force, which had adopted the German finger-four formation, bloodied the noses of Russia’s Red Air Force, which relied on the less effective tactic of a three-aircraft delta formation.

European theater (Western Front)

The Battle of France, however, gave the Germans ample opportunity to prove they had mastered the lessons learned from their experiences in the Spanish Civil War. The Luftwaffe, with more combat-experience pilots and the battle-tested Messerschmitt Bf 109 fighter operating in the flexible finger-four formation, proved superior to its British and French contemporaries relying on the close, three-fighter “vic” (or “V”) and other formations, despite their flying fighters with comparable maneuver performance.

The Battle of Britain was the first major military campaign to be fought entirely by air forces, and it offered further lessons for both sides. Foremost was the value of radar for detecting and tracking enemy aircraft formations, which allowed quick concentration of fighters to intercept them farther from their targets. As a defensive measure, this ground-controlled interception (GCI) approach allowed the Royal Air Force (RAF) to carefully marshal its limited fighter force for maximum effectiveness. At times, the RAF’s Fighter Command achieved interception rates greater than 80%.

In the summer of 1940, then Flight Lieutenant Adolph Malan introduced a variation of the German formation that he called the “fours in line astern”, which spread into more general use throughout Fighter Command. In 1941, Squadron Leader Douglas Bader adopted the “finger-four” formation itself, giving it its English-language name.

The Battle of Britain also revealed inadequacies of extant tactical fighters when used for long-range strategic attacks. The twin-engine heavy fighter concept was revealed as a failed concept as the Luftwaffe’s heavily armed but poorly maneuverable Messerschmitt Bf 110s proved highly vulnerable to nimble Hurricanes and Spitfires; the Bf 110s were subsequently relegated to night fighter and fighter-bomber roles for which they proved better-suited. Furthermore, the Luftwaffe’s Bf 109s, operating near the limits of their range, lacked endurance for prolonged dogfighting over Britain. When bomber losses induced Reichsmarschall Hermann Göring to assign most fighters to close-in escort duties, forcing them to fly and maneuver at reduced speeds, German fighter effectiveness fell and losses rose.

The Allies themselves, however, would not learn this latter lesson until they sustained heavy bomber losses of their own during daylight raids against Germany. Despite the early assertions of strategic bombing advocates that “the bomber will always get through”, even heavily armed U.S. Army Air Force (USAAF) bombers like the Boeing B-17 Flying Fortress and Consolidated B-24 Liberator suffered such high losses to German fighters (such as the Focke-Wulf Fw 190 “bomber destroyer”) and flak (AAA) that – following the second raid on Schweinfurt in August 1943 – the U.S. Eighth Air Force was forced to suspend unescorted bombing missions into Germany until longer-range fighters became available for escort. These would appear in the form of Lockheed P-38 Lightnings, Republic P-47 Thunderbolts and North American P-51 Mustangs. The use of drop tanks also became common, which further made the heavy twin-engine fighter designs redundant, as single-engine fighters could now cover a similar distance. Extra fuel was carried in lightweight aluminum tanks below the aircraft, and the tanks were discarded when empty. Such innovations allowed American fighters to range over Germany and Japan by 1944.

As the war progressed, the growing numbers of these advanced, long-range fighters flown by pilots with increasing experience eventually overwhelmed their German opposition, despite the Luftwaffe’s introduction of technological innovations like jet- and rocket-powered interceptors. The steady attrition of experienced pilots forced the Germans to more frequently dip into their training pool to make up numbers when casualties surged. While new Allied airmen in Europe were well-trained, new Luftwaffe pilots were seldom able to get effective training – particularly by the summer of 1944, when Allied fighters often loitered around their airfields. Luftwaffe training flights were additionally hampered by the increasingly acute fuel shortages that began in April 1944.

European theater (Eastern Front)

On the Eastern Front, the strategic surprise of Operation Barbarossa demonstrated that Soviet air defense preparations were woefully inadequate, and the Great Purge rendered any lessons learned by the Red Air Force command from previous experience in Spain and Finland virtually useless. During the first few months of the invasion, Axis air forces were able to destroy large numbers of Red Air Force aircraft on the ground and in one-sided dogfights. However, by the winter of 1941–1942, the Red Air Force was able to put together a cohesive air defense of Moscow, successfully interdict attacks on Leningrad, and begin production of new aircraft types in the relocated semi-built factories in the Urals, Siberia, Central Asia and the Caucasus. These facilities produced more advanced monoplane fighters, such as the Yak-1, Yak-3, LaGG-3, and MiG-3, to wrest air superiority from the Luftwaffe. However, Soviet aircrew training was hasty in comparison to that provided to the Luftwaffe, so Soviet pilot losses continued to be disproportionate until a growing number of survivors were matched to more effective machines.

Beginning in 1942, significant numbers of British, and later U.S., fighter aircraft were also supplied to aid the Soviet war effort, with the Bell P-39 Airacobra proving particularly effective in the lower-altitude combat typical of the Eastern Front. Also from that time, the Eastern Front became the largest arena of fighter aircraft use in the world; fighters were used in all of the roles typical of the period, including close air support, interdiction, escort and interception roles. Some aircraft were armed with weapons as large as 45 mm cannon (particularly for attacking enemy armored vehicles), and the Germans began installing additional smaller cannons in under-wing pods to assist with ground-attack missions.

Pacific theatre

In the Pacific Theater, the experienced Japanese used their latest Mitsubishi A6M “Zero” to clear the skies of all opposition. Allied air forces – often flying obsolete aircraft, as the Japanese were not deemed as dangerous as the Germans – were caught off-guard and driven back until the Japanese became overextended. While the Japanese entered the war with a cadre of superbly trained airmen, they were never able to adequately replace their losses with pilots of the same quality, resulting in zero leave for experienced pilots and sending pilots with minimal skill into battle, while the British Commonwealth Air Training Plan and U.S. schools produced thousands of competent airmen, compared to hundred the Japanese graduated a year before the war. Japanese fighter planes were also optimized for agility and range, and in time Allied airmen developed tactics that made better use of the superior armament and protection in their Grumman F4F Wildcats and Curtiss P-40s. From mid-1942, newer Allied fighter models were faster (Wildcat was 13 mph slower than the Zero, but the Warhawk was 29 mph faster) and better-armed than the Japanese fighters. Improved tactics such as the Thach weave helped counter the more agile Zeros and Nakajima Ki-43 ‘Oscars’. Japanese industry was not up to the task of mass-producing fighter designs equal to the latest Western models, and Japanese fighters had been largely driven from the skies by mid-1944.

Technological innovations

Piston-engine power increased considerably during the war. The Curtiss P-36 Hawk had a 900 hp (670 kW) radial engine but was soon redesigned as the P-40 Warhawk with a 1100 hp (820 kW) in-line engine. By 1943, the latest P-40N had a 1300 hp (970 kW) Allison engine. At war’s end, the German Focke-Wulf Ta 152 interceptor could achieve 2050 hp (1530 kW) with an MW-50 (methanol-water injection) supercharger and the American P-51H Mustang fitted with the Packard V-1650-9 could achieve 2218 hp (1650 kW) under war emergency power. The Spitfire Mk I of 1939 was powered by a 1030 hp (770 kW) Merlin II; its 1945 successor, the Spitfire F.Mk 21, was equipped with the 2035 hp (1520 kW) Griffon 61. Likewise, the radial engines favored for many fighters also grew from 1,100 hp (820 kW) to as much as 2090 hp (770 kW) during the same timeframe.

The first turbojet-powered fighter designs became operational in 1944, and clearly outperformed their piston-engined counterparts. New designs such as the Messerschmitt Me 262 and Gloster Meteor demonstrated the effectiveness of the new propulsion system. (Rocket-powered interceptors – most notable the Messerschmitt Me 163 – appeared at the same time, but proved less effective.) Many of these fighters could do over 660 km/h in level flight, and were fast enough in a dive that they started encountering the transonic buffeting experienced near the speed of sound; such turbulence occasionally resulted in a jet breaking up in flight due to the heavy load placed on an aircraft near the so-called “sound barrier”. Dive brakes were added to jet fighters late in World War II to minimize these problems and restore control to pilots.

More powerful armament became a priority early in the war, once it became apparent that newer stressed-skin monoplane fighters could not be easily shot down with rifle-caliber machine guns. The Germans’ experiences in the Spanish Civil War led them to put 20 mm cannons on their fighters. The British soon followed suit, putting cannons in the wings of their Hurricanes and Spitfires. The Americans, lacking a native cannon design, instead chose to place multiple .50 caliber (12.7 mm) machine guns on their fighters. Armaments continued to increase over the course of the war, with the German Me 262 jet having four 30 mm cannons in the nose. Cannons fired explosive shells, and could blast a hole in an enemy aircraft rather than relying on kinetic energy from a solid bullet striking a critical subsystem (fuel line, hydraulics, control cable, pilot, etc.). A debate existed over the merits of high rate-of-fire machine guns versus slower-firing, but more devastating, cannon.

With the increasing need for close air support on the battlefield, fighters were increasingly fitted with bomb racks and used as fighter-bombers. Some designs, such as the German Fw 190, proved extremely capable in this role – though the designer Kurt Tank had designed it as a pure interceptor. While carrying air-to-surface ordnance such as bombs or rockets beneath the aircraft’s wing, its maneuverability is decreased because of lessened lift and increased drag, but once the ordnance is delivered (or jettisoned), the aircraft is again a fully capable fighter aircraft. By their flexible nature, fighter-bombers offer the command staff the freedom to assign a particular air group to air superiority or ground-attack missions, as need requires.

Rapid technology advances in radar, which had been invented shortly prior to World War II, would permit their being fitted to some fighters, such as the Messerschmitt Bf 110, Bristol Beaufighter, de Havilland Mosquito, Grumman F6F Hellcat and Northrop P-61 Black Widow, to enable them to locate targets at night. The Germans developed several night-fighter types as they were under constant night bombardment by RAF Bomber Command. The British, who developed the first radar-equipped night fighters in 1940–1941, lost their technical lead to the Luftwaffe. Since the radar of the era was fairly primitive and difficult to use, larger two- or three-seat aircraft with dedicated radar operators were commonly adapted to this role.

Advertisements

B-25 : The Pistol Packing Bomber

May 16, 2010

B-25 Mitchell

The North American B-25 Mitchell was an American twin-engined medium bomber manufactured by North American Aviation. It was used by many Allied air forces, in every theater of World War II, as well as many other air forces after the war ended, and saw service across four decades.The B-25 was named in honor of General Billy Mitchell, a pioneer of U.S. military aviation. The B-25 is the only American military aircraft named after a specific person. By the end of its production, nearly 10,000 B-25s in numerous models had been built. These included a few limited variations, such as the United States Navy’s and Marine Corps’ PBJ-1 patrol bomber and the United States Army Air Forces’ F-10 photo reconnaissance aircraft.

Design and development

Flight Performance School also included work in evaluating the performance of this B-25 Mitchell medium bomberThe B-25 was a descendant of the earlier XB-21 (North American-39) project of the mid-1930s. Experience gained in developing that aircraft was eventually used by North American in designing the B-25 (called the NA-40 by the company). One NA-40 was built, with several modifications later being done to test a number of potential improvements. These improvements included Wright R-2600 radial engines, which would become standard on the later B-25.

In 1939, the modified and improved NA-40B was submitted to the United States Army Air Corps for evaluation. This aircraft was originally intended to be an attack bomber for export to the United Kingdom and France, both of which had a pressing requirement for such aircraft in the early stages of World War II. However, those countries changed their minds, opting instead for the also-new Douglas DB-7 (later to be used by the US as the A-20 Havoc). Despite this loss of sales, the NA-40B re-entered the spotlight when the Army Air Corps evaluated it for use as a medium bomber. Unfortunately, the NA-40B was destroyed in a crash on 11 April 1939. Nonetheless, the type was ordered into production, along with the Army’s other new medium bomber, the Martin B-26 Marauder.

Early production

An improvement of the NA-40B, dubbed the NA-62, was the basis for the first actual B-25. Due to the pressing need for medium bombers by the Army, no experimental or service-test versions were built. Any necessary modifications were made during production runs, or to existing aircraft at field modification centers around the world.A significant change in the early days of B-25 production was a re-design of the wing. In the first nine aircraft, a constant-dihedral wing was used, in which the wing had a consistent, straight, slight upward angle from the fuselage to the wing tip. This design caused stability problems, and as a result, the dihedral angle was nullified on the outboard wing sections, giving the B-25 its slightly gull wing configuration. Less noticeable changes during this period included an increase in the size of the tail fins and a decrease in their inward cant.A total of 6,608 B-25s were built at North American’s Fairfax Airport plant in Kansas City, Kansas.A descendant of the B-25 was the North American XB-28, meant to be a high-altitude version of the B-25. Despite this premise, the actual aircraft bore little resemblance to the Mitchell. It had much more in common with the B-26 Marauder.

Operational history

The B-25 first gained fame as the bomber used in the 18 April 1942 Doolittle Raid, in which sixteen B-25Bs led by the legendary Lieutenant Colonel Jimmy Doolittle, attacked mainland Japan four months after the bombing of Pearl Harbor. The mission gave a much-needed lift in spirits to the Americans, and alarmed the Japanese who had believed their home islands were inviolable by enemy troops. While the amount of actual damage done was relatively minor, it forced the Japanese to divert troops for the home defense for the remainder of the war. The raiders took off from the carrier USS Hornet and successfully bombed Tokyo and four other Japanese cities without loss. However, 15 subsequently crash-landed en route to recovery fields in Eastern China. These losses were the result of the task force being spotted by Japanese fishing vessels forcing the bombers to take off 170 mi early, fuel exhaustion, stormy nighttime conditions with zero visibility, and lack of electronic homing aids at the recovery bases. Only one landed intact; it came down in the Soviet Union, where its five-man crew was interned and the aircraft confiscated. Of the 80 aircrew, 69 survived their historic mission and eventually made it back to American lines.Following a number of additional modifications, including the addition of Plexiglas windows for the navigator and radio operator, heavier nose armament, and deicing and anti-icing equipment, the B-25C was released to the Army. This was the second mass-produced version of the Mitchell, the first being the lightly-armed B-25B used by the Doolittle Raiders. The B-25C and B-25D differed only in location of manufacture: -Cs at Inglewood, California, -Ds at Kansas City, Kansas. A total of 3,915 B-25Cs and -Ds were built by North American during World War II.

Although the B-25 was originally designed to bomb from medium altitudes in level flight, it was used frequently in the Southwest Pacific theater (SWPA) on treetop-level strafing and parafrag (parachute-retarded fragmentation bombs) missions against Japanese airfields in New Guinea and the Philippines. These heavily-armed Mitchells, field-modified at Townsville, Australia, by Major Paul I. “Pappy” Gunn and North American tech rep Jack Fox, were also used on strafing and skip-bombing missions against Japanese shipping trying to re-supply their land-based armies. Under the leadership of Lieutenant General George C. Kenney, B-25s of the Fifth and Thirteenth Air Forces devastated Japanese targets in the SWPA from 1942 to 1945, and played a significant role in pushing the Japanese back to their home islands. B-25s were also used with devastating effect in the Central Pacific, Alaska, North Africa, Mediterranean and China-Burma-India theaters.Because of the urgent need for hard-hitting strafer aircraft, a version dubbed the B-25G was developed, in which the standard-length transparent nose and the bombardier were replaced by a shorter solid nose containing two fixed .50 in machine guns and a 75 mm M4 cannon, one of the largest weapons fitted to an aircraft, similar to the experimental British Mosquito Mk. XVIII, and German Ju 88P heavy cannon carrying aircraft. The cannon was manually loaded and serviced by the navigator, who was able to perform these operations without leaving his crew station just behind the pilot. This was possible due to the shorter nose of the G-model and the length of the M4, which allowed the breech to extend into the navigator’s compartment.

The B-25G’s successor, the B-25H, had even more firepower. The M4 gun was replaced by the lighter T13E1, designed specifically for the aircraft. The 75 mm gun fired at a muzzle velocity of 2,362 ft/s . Due to its low rate of fire (approximately four rounds could be fired in a single strafing run) and relative ineffectiveness against ground targets, as well as substantial recoil, the 75 mm gun was sometimes removed from both G and H models and replaced with two additional .50 in machine guns as a field modification. The -H also mounted four fixed forward-firing .50 machine guns in the nose, four more fixed ones in forward-firing cheek blisters, two more in the top turret, one each in a pair of new waist positions, and a final pair in a new tail gunner’s position. Company promotional material bragged the B-25H could “bring to bear 10 machine guns coming and four going, in addition to the 75 mm cannon, a brace of eight rockets and 3,000 lb of bombs.”

The B-25H also featured a redesigned cockpit area, with the top turret moved forward to the navigator’s compartment (thus requiring the addition of the waist and tail gun positions), and a heavily modified cockpit designed to be operated by a single pilot, the co-pilot’s station and controls deleted, and the seat cut down and used by the navigator/cannoneer, the radio operator being moved to the aft compartment, operating the waist guns. A total of 1,400 B-25Gs and B-25Hs were built.

The final version of the Mitchell, the B-25J, looked much like the earlier B, C and D, having reverted to the longer nose. The less-than-successful 75 mm cannon was deleted on the J model. Instead, 800 of this version were built with a solid nose containing eight .50 machine guns, while other J-models featured the earlier “greenhouse” style nose containing the bombardier’s position. Regardless of the nose style used, all J-models also included two .50 in guns in a “fuselage package” located directly under the pilot’s station, and two more such guns in an identical package just under the co-pilot’s compartment. The solid-nose B-25J variant carried an impressive total of 18 .50 in guns: eight in the nose, four in under-cockpit packages, two in an upper turret, two in the waist, and a pair in the tail. No other bomber of World War II carried as many guns. However, the first 555 B-25Js (the B-25J-1-NC production block) were delivered without the fuselage package guns, because it was discovered muzzle blast from these guns was causing severe stress in the fuselage;this was cured with heavier fuselage skin patches, while later production runs returned these guns, they were often removed as a field modification for the same reason. In all, 4,318 B-25Js were built.

The B-25 was a safe and forgiving aircraft to fly. With an engine out, 60° banking turns into the dead engine were possible, and control could be easily maintained down to 145 mph . However, the pilot had to remember to maintain engine-out directional control at low speeds after take off with rudder – if this was attempted with ailerons, the aircraft would snap out of control. The tricycle landing gear made for excellent visibility while taxiing. The only significant complaint about the B-25 was the extremely high noise level produced by its engines; as a result, many pilots eventually suffered from various degrees of hearing loss. The high noise level was due to design and space restrictions in the engine cowlings which resulted in the exhaust “stacks” protuding directly from the cowling ring and partly covered by a small triangular fairing. This directed exhaust and noise directly at the pilot and crew compartments. Crew members and operators on the airshow circuit frequently comment that “the B-25 is the fastest way to turn aviation fuel directly into noise”. Many B-25’s now in civilian ownership have been modified with exhaust rings that direct the exhaust through the outboard bottom section of the cowling.

The Mitchell was also an amazingly sturdy aircraft and could withstand tremendous punishment. One well-known B-25C of the 321st Bomb Group was nicknamed “Patches” because its crew chief painted all the aircraft’s flak hole patches with high-visibility zinc chromate paint. By the end of the war, this aircraft had completed over 300 missions, was belly-landed six times and sported over 400 patched holes. The airframe was so bent, straight-and-level flight required 8° of left aileron trim and 6° of right rudder, causing the aircraft to “crab” sideways across the sky.

An interesting characteristic of the B-25 was its ability to extend range by using one-quarter wing flap settings. Since the aircraft normally cruised in a slightly nose-high attitude, about 40 gal of fuel was below the fuel pickup point and thus unavailable for use. The flaps-down setting gave the aircraft a more level flight attitude, which resulted in this fuel becoming available, thus slightly extending the aircraft’s range.

By the time a separate United States Air Force was established in 1947, most B-25s had been consigned to long-term storage. However, a select number continued in service through the late 1940s and 1950s in a variety of training, reconnaissance and support roles. Its principal use during this period was for undergraduate training of multi-engine aircraft pilots slated for reciprocating engine or turboprop cargo, aerial refueling or reconnaissance aircraft. Still others were assigned to units of the Air National Guard in training roles in support of F-89 Scorpion and F-94 Starfire operations. TB-25J-25-NC Mitchell, 44-30854, the last B-25 in the USAF inventory, assigned at March AFB, California as of March 1960[6], was flown to Eglin AFB, Florida, from Turner Air Force Base, Georgia, on 21 May 1960, the last flight by a USAF B-25, and presented by Brig. Gen. A. J. Russell, Commander of SAC’s 822nd Air Division at Turner AFB, to the Air Proving Ground Center Commander, Brig. Gen. Robert H. Warren, who in turn presented the bomber to Valparaiso, Florida Mayor Randall Roberts on behalf of the Niceville-Valparaiso Chamber of Commerce. Four of the original Tokyo Raiders were present for the ceremony, Col. Davy Jones, Col. Jack Simms, Lt. Col. Joseph Manske, and retired Master Sgt. Edwin W. Horton. Donated back to the Air Force Armament Museum circa 1974 and marked as Doolittle’s 40-2344.

Empire State Building incident

On Saturday, 28 July 1945, at 0940 (while flying in thick fog), a USAAF B-25D crashed into the north side of the Empire State Building, hitting between the 79th and 80th floor. Fourteen people were killed — 11 in the building, along with Colonel William Smith and the other two occupants of the bomber. Betty Lou Oliver, an elevator attendant, survived the impact and a subsequent accident with the elevator. It was partly because of this incident that towers 1 and 2 of the World Trade Center were designed to withstand the impact of a Boeing 707 aircraft (unfortunately NOT Arab terrorist hijacked airliners).

Variants

B-25

The first version of the B-25 delivered. No prototypes were ordered. The first nine aircraft were built with constant dihedral angle. Due to low stability, the wing was redesigned so that the dihedral was eliminated on the outboard section. (Number made: 24.)
B-25A
Version of the B-25 modified to make it combat ready; additions included self-sealing fuel tanks, crew armor, and an improved tail gunner station. No changes were made in the armament. Re-designated obsolete (RB-25A designation) in 1942. (Number made: 40.)
B-25B
Rear turret deleted; manned dorsal and remotely-operated ventral turrets added, each with a pair of .50 in (12.7 mm) machine guns. The ventral turret was retractable, but the increased drag still reduced the cruise speed by 30 mph (48 km/h). 23 were delivered to the RAF as the Mitchell Mk I. The Doolittle Raiders flew B-25Bs on their famous mission. (Number made: 120.)
B-25C
Improved version of the B-25B: powerplants upgraded from Wright R-2600-9 radials to R-2600-13s; de-icing and anti-icing equipment added; the navigator received a sighting blister; nose armament was increased to two .50 in (12.7 mm) machine guns, one fixed and one flexible. The B-25C model was the first mass-produced B-25 version; it was also used in the United Kingdom (as the Mitchell II), in Canada, China, the Netherlands, and the Soviet Union. First mass-produced B-25 model. (Number made: 1,625.)
ZB-25C
B-25D
Identical to the B-25C, the only difference was that the B-25D was made in Kansas City, Kansas, whereas the B-25C was made in Inglewood, California. First flew on 3 January 1942. (Number made: 2,290.)
ZB-25D
XB-25E
Single B-25C modified to test de-icing and anti-icing equipment that circulated exhaust from the engines in chambers in the leading and trailing edges and empennage. The aircraft was tested for almost two years, beginning in 1942; while the system proved extremely effective, no production models were built that used it prior to the end of World War II. Many prop aircraft today use the XB-25E system. (Number made: 1, converted.)
ZXB-25E
XB-25F-A
Modified B-25C that tested the use of insulated electrical de-icing coils mounted inside the wing and empennage leading edges as a de-icing system. The hot air de-icing system tested on the XB-25E was more practical. (Number made: 1, converted.)
XB-25G
Modified B-25C in which the transparent nose was replaced by a solid one carrying two fixed .50 in (12.7 mm) machine guns and a 75 mm (2.95 in) M4 cannon, then the largest weapon ever carried on an American bomber. (Number made: 1, converted.)
B-25G
To satisfy the dire need for ground-attack and strafing aircraft, the B-25G was made following the success of the prototype XB-25G. The production model featured increased armor and a greater fuel supply than the XB-25G. One B-25G was passed to the British, who gave it the name Mitchell II that had been used for the B-25C. (Number made: 420.)
B-25H

B-25H Barbie III taxiing at Centennial Airport, ColoradoAn improved version of the B-25G. It featured two additional fixed .50 in (12.7 mm) machine guns in the nose and four in fuselage-mounted pods; the heavy M4 cannon was replaced by a lighter 75 mm (2.95 in) T13E1. (Number made: 1,000; number left flying in the world: 1.)
B-25J
The last production model of the B-25, often called a cross between the B-25C and the B-25H. It had a transparent nose, but many of the delivered aircraft were modified to have a solid nose. Most of its 14–18 machine guns were forward-facing for strafing missions. 316 were delivered to the Royal Air Force as the Mitchell III. (Number made: 4,318.)
CB-25J
Utility transport version.
VB-25J
A number of B-25s were converted for use as staff and VIP transports. Henry H. Arnold and Dwight D. Eisenhower both used converted B-25Js as their personal transports.

U.S. Navy / U.S. Marine Corps variants

PBJ-1C
Similar to the B-25C for the US Navy; often fitted with airborne search radar and used in the anti-submarine role.
PBJ-1D
Similar to the B-25D for the US Navy and US Marine Corps. Differed in having a single .50 in (12.7 mm) machine gun in the tail turret and beam gun positions similar to the B-25H. Often fitted with airborne search radar and used in the anti-submarine role.
PBJ-1G
US Navy/US Marine Corps designation for the B-25G
PBJ-1H
US Navy/US Marine Corps designation for the B-25H
PBJ-1J
US Navy designation for the B-25J-NC (Blocks -1 through -35) with improvements in radio and other equipment. Often fitted with “package guns” and wingtip search radar for the anti-shipping/anti-submarine role.

Survivors

There are more than one hundred surviving B-25 Mitchells scattered over the world, mainly in the United States. Most of them are on static display in museums, but about 45 are still airworthy.

On 18 April 2010, 17 airworthy B-25s took off from the airfield behind the National Museum of the United States Air Force and flew over in formation to commerate the 68th anniversary of the Doolittle Raid. Four of the surviving members of the Raid were in attendance for the reunion; Cole, Griffin, Hite and Thatcher, although Hite departed before the flyover. Secretary of the Air Force Michael Donley, Commander of Air Force Material Command General Donald Hoffman and the Director of the National Museum of the United States Air Force Major General Charles Metcalf were there also.

Specifications (B-25J)

North American B-25 Mitchell

Role Medium bomber

Manufacturer North American Aviation

First flight 19 August 1940

Introduction 1941

Retired 1979 (Indonesia)

Primary users United States Army Air Forces,Royal Canadian Air Force,Royal Air Force,Soviet Air Force

Number built 9,984

Developed from XB-21

Developed into North American XB-28

General characteristics

Crew: six (two pilots, navigator/bombardier, turret gunner/engineer, radio operator/waist gunner, tail gunner
Length: 52 ft 11 in (16.1 m)
Wingspan: 67 ft 6 in (20.6 m)
Height: 17 ft 7 in (4.8 m)
Wing area: 610 sq ft (57 m²)
Empty weight: 21,120 lb (9,580 kg)
Loaded weight: 33,510 lb (15,200 kg)
Max takeoff weight: 41,800 lb (19,000 kg)
Powerplant: 2× Wright R-2600 “Cyclone” radials, 1,850 hp (1,380 kW) each
Performance

Maximum speed: 275 mph (239 kn, 442 km/h)
Cruise speed: 230 mph (200 kn, 370 km/h)
Combat radius: 1,350 mi (1,170 nmi, 2,170 km)
Ferry range: 2,700 mi (2,300 nmi, 4,300 km)
Service ceiling: 25,000 ft (7,600 m)
Rate of climb: 790 ft/min (4 m/s)
Wing loading: 55 lb/ft² (270 kg/m²)
Power/mass: 0.110 hp/lb (182 W/kg)
Armament

Guns: 12-18 × .50 in (12.7 mm) machine guns
Hardpoints: 2,000 lb (900 kg) ventral shackles to hold one external Mark 13 torpedo[15]
Rockets: 3,000 lb (1,360 kg) bombs + eight 5 in (130 mm) high velocity aircraft rockets (HVAR)
Bombs: 6,000 lb (2,700 kg)

A Short History of Aircraft Nose Art

May 3, 2010

Nose art

is a decorative painting or design on the fuselage of a military aircraft, usually located near the nose, and is a form of aircraft graffiti.

While begun for practical reasons of identifying friendly units, the practice evolved to express the individuality often constrained by the uniformity of the military, to evoke memories of home and peacetime life, and as a kind of psychological protection against the stresses of war and the probability of death. The appeal, in part, came from nose art not being officially approved, even when the regulations against it were not enforced.

Because of its individual and unofficial nature, it is considered folk art, inseparable from work as well as representative of a group. It can also be compared to sophisticated graffiti. In both cases, the artist is often anonymous, and the art itself is ephemeral. In addition, it relies on materials immediately available.

Nose art is largely a military tradition, but civilian airliners operated by the Virgin Group feature “Virgin Girls” on the nose as part of their livery. In a broad sense, the tail art of several airlines such as the Eskimo of Alaska Airlines, can be called “nose art”, as are the tail markings of present-day U.S. Navy squadrons. There were exceptions, including 8th Air Force B-17 “Whizzer”, which had its girl-riding-a-bomb on the dorsal fin.
History

The practice of putting personalized decorations on fighting aircraft originated with Italian and German pilots. The first recorded piece of nose art was a sea monster painted on the nose of an Italian flying boat in 1913. This was followed by the popular practice of painting mouths underneath the propeller spinner, initiated by German pilots in World War I. The cavallino rampante (prancing horse) of the Italian ace Francesco Baracca was another well-known symbol, as was the red-painted aircraft of Manfred von Richthofen. However, nose art of this era was often conceived and produced by the aircraft ground crews, not by the pilots.

Other World War I examples included the “Hat in the Ring” of the American 94th Aero Squadron (attributed to Lt. Johnny Wentworth) and the “Kicking Mule” of the 95th Aero Squadron. This followed the official policy, established by the American Expeditionary Forces’ (AEF) Chief of the Air Service, Brigadier General Benjamin Foulois, on 6 May 1918, requiring the creation of distinct, readily identifiable squadron insignia. What is perhaps the most famous of all nose art, the shark-face insignia made famous by the American Volunteer Group Flying Tigers, also first appeared in World War I, though often with an effect more comical than menacing.

While World War I nose art was usually embellished or extravagant squadron insignia, true nose art appeared during World War II, which is considered by many observers to be the golden age of the genre, with both Axis and Allied pilots taking part. At the height of the war, nose-artists were in very high demand in the USAAF and were paid quite well for their services while AAF commanders tolerated nose art in an effort to boost aircrew morale. The U.S. Navy, by contrast, prohibited nose art, while nose art was uncommon in the RAF or RCAF.
Curtiss P-40 fighter aircraft of the Flying Tigers, with their iconic shark face and the 12-point sun of the Chinese Air Force.

The work was done by professional civilian artists as well as talented amateur servicemen. In 1941, for instance, the 39th Pursuit Squadron commissioned a Bell Aircraft artist to design and paint the “Cobra in the Clouds” logo on their aircraft. Perhaps the most enduring nose art of WWII was the shark-face motif, which first appeared on the Bf-110s of Luftwaffe 76th Destroyer Wing over Crete, where the twin-engined Messerschmitts outmatched the Gloster Gladiator biplanes of RAF 112 Squadron. The Commonwealth pilots were withdrawn to Egypt and refitted with Curtiss Tomahawks off the same assembly line building fighter aircraft for the AVG Flying Tigers being recruited for service in China. In November 1941, AVG pilots saw a 112 Squadron Tomahawk in an illustrated weekly and immediately adopted the shark-face motif for their own planes. This work was done the pilots and ground crew in the field. Similarly, when in 1943 the 39th Fighter Squadron became the first American squadron in their theatre with 100 kills, they adopted the shark-face for their P-38 Lightnings. The shark-face is still used to this day, most commonly seen on the A-10 Thunderbolt II (with its gaping maw leading up to the muzzle of the aircraft’s GAU-8 Avenger 30mm cannon), a testament to its popularity as a form of nose art.
Nose art on a B-17 Flying Fortress

In the Korean War, nose art was popular with units operating A-26 and B-29 bombers, C-119 Flying Boxcar transports, as well as USAF fighter-bombers. Due to changes in military policies and changing attitudes toward the representation of women, the amount of nose art declined after the Korean War.

During the Vietnam War, AC-130 gunships of the U.S Air Force Special Operations Squadrons were often given names with accompanying nose art – for example, “Thor”, “Azrael – Angel of Death”, “Ghost Rider”, “War Lord” and “The Arbitrator.” The unofficial gunship badge of a flying skeleton with a Minigun was also applied to many aircraft until the end of the war, and was later adopted officially.

Nose art underwent a revival during Operation Desert Storm and has become more common since Operation Enduring Freedom and Operation Iraqi Freedom began. Many crews are merging artwork as part of camouflage patterns. The United States Air Force had unofficially sanctioned the return of the pin-up (albeit fully-clothed) with the Strategic Air Command permitting nose art on its bomber force in the Command’s last years. The continuation of historic names such as Memphis Belle was encouraged.

International designs

Source material for American nose art was varied, ranging from pinups such as Rita Hayworth and Betty Grable and cartoon characters such as Donald Duck and Popeye to patriotic characters (Yankee Doodle) and fictional heroes (Sam Spade). Lucky symbols such as dice and playing cards also inspired nose art, along with cartoon characters and references to mortality such as the Grim Reaper. Cartoons and pinups were most popular among American artists, but other works included animals, nicknames, hometowns, and popular song and movie titles. Some nose art and slogans imposed contempt to the enemy, especially to enemy leaders.

The farther the planes and crew were from headquarters or from the public eye, the racier the art tended to be. For instance, nudity was more common in nose art on aircraft in the Pacific than on aircraft in Europe.

Luftwaffe aircraft did not often display nose art, but there were exceptions. For example, Mickey Mouse adorned a Condor Legion Bf-109 during the Spanish Civil War and one Ju-87A was decorated with a large pig inside a white circle during the same period. Adolf Galland’s Bf-109E-3 of JG 26 also had a depiction of Mickey Mouse, holding a contemporary telephone in his hands, in mid-1941. A Ju-87B-1 (S2+AC) of Stab II/St. G 77, piloted by Major Alfons Orthofer and based in Breslau-Schongarten during the invasion of Poland, was painted with a shark’s mouth, and some Bf-110s were decorated with furious wolf’s heads or shark mouths on engine covers. Another example was Erich Hartmann’s Bf-109G-14, “Lumpi”, with an eagle’s head. A Bf-109g-10 (10 red) of I./JG 300, maintained by Officer Wolfgang Hunsdorfer, was flown by various pilots. In addition, the fighter wing Jagdgeschwader 54 was known as the Grünherz (Green Hearts) after their fuselage emblem, a large green heart. The Geschwader was originally formed in Thüringen, nicknamed “the green heart of Germany”. Perhaps the flashiest Luftwaffe nose art was the snake insignia running through the whole fuselage of certain Ju 87 Stukas.

The Soviet Air Force also decorated their planes with historical images, mythical beasts, and patriotic slogans.

The attitude of the Finnish Air Force to the nose art varied by unit. Some units disallowed nose art, while others tolerated it. Generally the Finnish air force nose art was humorous or satirical, such as the “horned Stalin” on Maj. Maunula’s Curtiss P-36.

The Japan Air Self-Defense Force has decorated fighter aircraft with Valkyrie-themed characters under the names Mystic Eagle and Shooting Eagle.

Canadian Forces were reported to have nose art on CH-47D Chinook and CH-146 Griffon helicopters in Afghanistan.

Famous examples

General Adolf Galland was famous for painting Mickey Mouse on his aircraft, and the mascot was adopted by his Gruppe during the early airwar phase of World War II.Oberstleutnant Werner Mölders flew a yellow-nosed Bf-109F2 while with JG 51 during June 1941.Other fighter aces and their nose art have become synonymous.

* Don Gentile’s P-51C’s named “Shangri-La”, with an eagle sporting boxing gloves.
* Chuck Yeager’s series of aircraft named “Glamourous Glennis”, with bright letter art.
* Ian Gleed’s Spitfires featured Figaro the Cat, from the 1940 Disney animated movie Pinocchio.
* Pierre Closterman’s Hawker Tempest Le Grand Charles featured the Cross of Lorraine.
* Johnny Johnson’s Spitfire IX featured the Canadian maple leaf.
* Erich Hartmann’s Bf 109s featured a distinctive “black tulip” design on the very front of the cowling, immediately behind the spinner.

The markings of aces were often adopted by their squadrons, such as Galland’s Mickey Mouse and Hartmann’s black tulip (still in use today on the aircraft of JG 71 “Richthofen”).

Nose art bans

The British MoD banned the use of pin-up women in nose art on Royal Air Force aircraft in 2007, as commanders decided the images (many containing naked women), were inappropriate and potentially offensive to female personnel, although there were no documented complaints.

Development of Aerial Combat in World War I

April 25, 2010

A fighter aircraft is a military aircraft designed primarily for air-to-air combat with other aircraft, as opposed to a bomber, which is designed primarily to attack ground targets by dropping bombs. Fighters are small, fast, and maneuverable. Many fighters have secondary ground-attack capabilities, and some are dual-roled as fighter-bombers; the term “fighter” is also sometimes used colloquially for dedicated ground-attack aircraft. Fighter aircraft are the primary means by which armed forces gain air superiority over their opponents in battle. Since at least World War II, achieving and maintaining air superiority has been a key component of victory in warfare, particularly conventional warfare between regular armies (as opposed to guerrilla warfare). The purchase, training and maintenance of a fighter fleet represent a very substantial proportion of defense budgets for modern militaries.

The word “fighter” did not become the official English term for such aircraft until after World War I. In Great Britain’s Royal Flying Corps these aircraft continued to be called “scouts” into the early 1920s. The U.S. Army called their fighters “pursuit” aircraft (reflected by their designation in the “P” series) from 1916 until the late 1940s. In the French, Portuguese and German languages the term used (and still in use) literally means “hunter”. This has been followed in most other languages, an exception being Russian, in which the fighter is called “истребитель” (pronounced “istrebitel”), meaning “exterminator”.

Fighters were developed in response to the fledgling use of aircraft and dirigibles in World War I for reconnaissance and ground-attack roles. Early fighters were very small and lightly armed by later standards, and were mostly biplanes. As aerial warfare became increasingly important, so did control of the airspace.

The word “fighter” was first used to describe a two-seater aircraft with sufficient lift to carry a machine gun and its operator as well as the pilot. The first such “fighters” belonged to the “gunbus” series of experimental gun carriers of the British Vickers company which culminated in the Vickers F.B.5 Gunbus of 1914. The main drawback of this type of aircraft was its lack of speed. It was quickly realized that an aircraft intended to destroy its kind in the air needed at least to be fast enough to catch its quarry.

Fortunately another type of military aircraft already existed, which was to form the basis for an effective “fighter” in the modern sense of the word. It was based on the small fast aircraft developed before the war for such air races as the Gordon Bennett Cup and Schneider Trophy. The military scout airplane was not expected to be able to carry serious armament, but rather to rely on its speed to be able to reach the location it was required to “scout” or reconnoiter and then return quickly to report – while at the same time making itself a difficult target for anti-aircraft artillery or enemy gun-carrying aircraft. British “scout” aircraft in this sense included the Sopwith Tabloid and Bristol Scout; French equivalents included the light, fast Morane-Saulnier N.

In practice, soon after the actual commencement of the war, the pilots of small scout aircraft began to arm themselves with pistols, carbines, grenades, and an assortment of improvised weapons with which to attack enemy aircraft. It was inevitable that sooner or later means of effectively arming “scouts” would be devised. One method was to build a “pusher” scout such as the Airco DH.2, with the propeller mounted behind the pilot. The main drawback was that the high drag of a pusher type’s tail structure meant that it was bound to be slower than an otherwise similar “tractor” aircraft. The other approach was to mount the machine gun armament on a tractor-type airplane in a manner that enabled the gun to fire outside the arc of the propeller.

Only two configuration options were practical initially for tractor aircraft. One involved having a second crew member added behind the pilot to aim and fire a swivel-mounted machine gun at enemy airplanes. However, this limited the area of coverage chiefly to the rear hemisphere, and the inability to effectively coordinate the pilot’s maneuvering with the gunner’s aiming, which reduced the accuracy and efficacy of the gunnery. This option was chiefly employed as a defensive measure on two seater reconnaissance aircraft from 1915 on. The alternative configuration mounted a gun on the upper wing to fire over the propeller arc. While more effective for offensive combat, since the pilot could move and aim the guns as a unit, this placement made determining the proper aim point more difficult. Furthermore, this location made it nearly impossible for a pilot to maneuver his aircraft and have access to the gun’s breech – a very important consideration, given the tendency of early machine guns to jam – hence this was a stopgap solution. Nevertheless, a machine gun firing over the propeller arc did have some advantages, and was to remain in service from 1915 (Nieuport 11) until 1918 (Royal Aircraft Factory S.E.5). The British Foster mounting was specifically designed for this kind of application.

The need to arm a tractor scout with a forward-firing gun whose bullets passed through the propeller arc was evident even before the outbreak of war, and its approach motivated inventors in both France and Germany to devise a practical synchronization gear that could time the firing of the individual rounds to when the propeller was not in the way. Franz Schneider, a Swiss engineer, had patented such a device in Germany in 1913, but his original work was not followed up. French aircraft designer Raymond Saulnier patented a practical device in April 1914, but trials were unsuccessful because of the propensity of the machine gun employed to hang fire due to unreliable ammunition.

In December 1914, French aviator Roland Garros asked Saulnier to install his synchronization gear on Garros’ Morane-Saulnier Type L. Unfortunately the gas-operated Hotchkiss machine gun had a firing cycle which caused the bullet to leave the weapon too late to effectively and consistently synchronize the gunfire with a spinning propeller. Because of this, the propeller blades were armored, and Garros’ mechanic, Jules Hue, fitted metal wedges to the blades to protect the pilot from ricochets. Garros’ modified monoplane was first flown in March 1915 and he began combat operations soon thereafter. Firing 8 mm (.323 in) solid copper bullets, Garros scored three victories in three weeks before he himself was shot down on 18 April and his airplane – along with its synchronization gear and propeller – was captured by the Germans.

However, the synchronization gear (called the Zentralsteuerung in German) devised by the engineers of Anthony Fokker’s firm was the first gear to attract official sponsorship, and this would make the pioneering Fokker Eindecker monoplane a feared name over the Western Front, despite its being an adaptation of an obsolete pre-war French Morane-Saulnier racing airplane, with a mediocre performance and poor flight characteristics. The first victory for the Eindecker came on 1 July 1915, when Leutnant Kurt Wintgens, flying with the Fliegerabteilung 6 unit on the Western Front, forced down a Morane-Saulnier Type L two-seat “parasol” monoplane of Luneville. Wintgens’ aircraft, one of the five Fokker M.5K/MG production prototype examples of the Eindecker, was armed with a synchronized, air-cooled aviation version of the Parabellum MG14 machine gun, which did not require armored propellers. In some respects, this was the first “true” fighter victory of military aviation history.

The success of the Eindecker kicked off a competitive cycle of improvement among the combatants, building ever more capable single-seat fighters. The Albatros D.I of late 1916, designed by Robert Thelen, set the classic pattern followed by almost all such aircraft for about twenty years. Like the D.I, they were biplanes (only very occasionally monoplanes or triplanes). The strong box structure of the biplane wing allowed for a rigid wing that afforded accurate lateral control, which was essential for fighter-type maneuvers. They had a single crew member, who flew the aircraft and also operated its armament. They were armed with two Maxim-type machine guns – which had proven much easier to synchronize than other types – firing through the propeller arc. The gun breeches were typically right in front of the pilot’s face. This had obvious implications in case of accidents, but enabled jams (to which Maxim-type machine guns always remained liable) to be cleared in flight and made aiming much easier.

The use of metal in fighter aircraft was pioneered in World War I by Germany, as Anthony Fokker used chrome-molybdenum steel tubing (a close chemical cousin to stainless steel) for the fuselage structure of all his fighter designs, and the innovative German engineer Hugo Junkers developed two all-metal, single-seat fighter monoplane designs with cantilever wings: the strictly experimental Junkers J 2 private-venture aircraft, made with steel, and some forty examples of the Junkers D.I, made with corrugated duralumin, all based on his pioneering Junkers J 1 all-metal airframe technology demonstration aircraft of late 1915.

As collective combat experience grew, the more successful pilots such as Oswald Boelcke, Max Immelmann, and Edward Mannock developed innovative tactical formations and maneuvers to enhance their air units’ combat effectiveness and accelerate the learning – and increase the expected lifespan – of newer pilots reaching the front lines.

Allied and – until 1918 – German pilots of World War I were not equipped with parachutes, so most cases of an aircraft catching fire, or structurally breaking up in flight were fatal. Parachutes were well-developed by 1918, and were adopted by the German flying services during the course of that year (the famous “Red Baron” was wearing one when he was killed), but the allied command continued to oppose their use, on various grounds.

note:  the following blog was compiled from various readings and sources and is not an original work